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Abstract 
In recent times there is a growing interest in systems architectures in domains like biological 

systems and social networks leading to useful insights and generalizations. These developments 

have opened up possibility of investigating architectures of complex engineering systems on similar 

lines. Architecture of a system can be abstracted as a graph, wherein the nodes/vertices correspond 

to components and edges correspond to interconnections between them. Graphs representing system 

architecture have revealed motifs or patterns. Motifs are recurring patterns of 3-noded (or 4, 5 etc.) 

sub-graphs of the graph. Over-represented motifs have offered insights into the basic functionality of 

systems in some cases. Concept of motif significance profiles (i.e., proportions of various motifs 

present in a system) has also given rise to interesting insights. These profiles are seen to be highly 

correlated across systems of the same family (i.e., very similar proportions of motifs are present in 

systems of same type).  Recently these profiles are proposed as classifiers for system architecture. 

We now show that the same classification of systems can be arrived at by merely looking at 

characteristics of components/nodes from which systems are synthesized.  In other words, we argue 

that the motif significance profile of a system is due to the properties of the individual components 

that form the system. We have shown this by considering a vast variety of systems (38 systems 

arbitrarily chosen) ranging from – biological systems, languages, electronic circuits, software 

systems and mechanical engineering systems.  

Keywords  

Systems architecture, Motifs, Over-represented patterns, Pattern signatures, Component 

characteristics, System architecture families. 



2 

 

1. Introduction 
1.1. Complex Systems Architectures 

Recent years have witnessed a growing interest in the study of complex systems 

architectures, in domains like biological systems and social networks [Duncan J Watts]. Unifying 

principles have emerged [Boccaletti S et al].  Literature has commented on the hesitation of researchers 

in complex engineering systems, to look at their problems, in the light of emerging ideas in complex 

systems in general. “Engineering should be at the centre of these developments, and contribute to the 

development of new theory and tools” [Ottino J M];  “Engineers seem a little bit indifferent as if 

engineering is at the edge of the science of complexity” [Zhi-Qiang Jiang et al]

Architecture is the fundamental structure of components of a system - the roles they play, 

and how they are related to each other and to their environment 

.  

[ANSI IEEE Standard 1471]. The 

dictionary definition of complexity refers to interconnected/interwoven components. Complexity of 

a system scales with the number of components, number of interactions, complexities of the 

components and complexities of interactions [Edward Crawley et al]. Complex engineering systems are 

synthesized from a large number of components coupled to each other, giving them a physical 

architecture. They evolve through a design process that is best represented by a large number of 

connected tasks, giving them a technical architecture. Also, they are created by collaborating groups 

of people giving them an organizational architecture. These architectural views pose interesting 

possibilities in respect of searching new understanding in complex engineering systems [Tyson R 

Browning]

1.2. Background 

. Architecture of a system (say for example from engineering, biology, sociology) can be 

abstracted as a network/graph, where the nodes/vertices correspond to components in the system and 

edges correspond to interconnection between them.  

Previous literature on complex systems research in biology defines motifs (also referred to 

as over-represented patterns) as recurring sub-graphs of the graph. In biology, the analysis of 

network motifs has led to interesting insights in the areas of protein-protein interaction prediction 

[Albert L et al] and analysis of temporal gene expression patterns [Ronen M et al]. For instance, incase of 

sensory transcription networks of biology the discovered motifs have been theoretically and 
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experimentally shown to perform signal-processing tasks. It is also argued in the literature that 

motifs can represent the simple building blocks of complex networks whose selection may possibly 

be one way to understand the basic functionality of a system. However, in other domains how 

important these ideas related to motifs are for supporting the global architecture is an area of recent 

research. Very similar ideas related to over-represented patterns/motifs namely chains [Villas Boas et al], 

pairwise disconnectivity index [Goemann B et al] have also been proposed in literature. Milo et al [Milo R 

et al] have proposed an approach to study similarity in the structure of networks, based on the 

significance profile (SP) of motifs in the network. They have discovered super families based on 3 

node motifs from networks from biology, languages etc. Shaja and Sudhakar (authors) have recently 

discovered super families based on 3 node motifs for engineering systems ranging from softwares, 

mechanical systems and electrical circuits [Shaja A S, Sudhakar K] Recently motif signatures have also 

been proposed as a classifier for networks [Ahnert S.E., Fink T.M.A]

1.3. New Insights based on Component Characteristics  

.  

In this manuscript, we show that almost the same super families’ classification which was 

previously achieved by [Milo R et al, Shaja A S, Sudhakar K

2. Theoretical Background 

] can be achieved by merely looking at the 

individual components/nodes characteristics. In other words, we argue that the classification of the 

system architectures across families using motif significance profile is due to the properties of the 

individual components that form the system. We have shown this by considering a vast variety of 

systems (38 systems arbitrarily chosen) ranging from – biology systems, languages, electronic 

circuits, software systems and mechanical engineering systems.  

2.1. Motifs 

 “Motifs are recurring sub-graphs of interactions from which the networks are built” [Milo R et 

al]. Some patterns of interconnections occur in real networks in numbers that are considered 

significant. Motifs can be of any size from n=2 to N-1, where N is the total number of nodes in the 

network.  Let us consider a directed network with N nodes and look for motifs of size n=3. There are 
NC3 different combinations of triplets of nodes in an N-noded network.  Some triplets out of  NC3 

need not form a connected graph, and are not sub-graphs (an example is when out of 3 nodes 2 

nodes are connected to each other and the third does not have an edge with the first two).  A 
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connected triplet is a 3-noded sub-graph.  For a 3-noded sub-graph there are 13 patterns possible as 

shown in Fig 3.1.   

 

Fig 3.1 All 13 patterns for connected triplets 

Each of the NC3 triplets, if it is a sub-graph, will assume one of the 13 patterns.  One can count the 

occurrence of each pattern for all NC3 triplets and define a vector, Preal, of size 13.  In a network, the 

count for a particular pattern may be high, which by itself is not considered important. It is possible 

that such high count for that pattern is unavoidable for a network synthesized using the N nodes that 

preserve the degree distribution of the real network.   To investigate this, randomized networks are 

created [Milo R et al] using same N nodes, i.e., the number of nodes and their degree distribution is 

preserved.  Each randomized network defines a pattern count vector, Prand-i.  A large number of 

randomized networks (i=1 to m) will define a vector of means, µrand and a vector of standard 

deviations, σrand, of 13 patterns.  For the real network we can check the significance of jth

    S

 pattern by,  

j = (Preal-j - µrand-j)/σrand-j

For a normally distributed random number, -3 ≤ S

 for j=1 to 13 

j ≤ 3 implies a rare occurrence (3σ limit).  Any 

pattern with its Sj > 2 is considered a motif and is an over-represented pattern [Milo R et al],.  Any 

pattern with its Sj

2.2. Motif Significance Profile (MSP) 

 < -2 is an anti-motif, and is an under-represented pattern. 

 S is a vector of size 13 that defines significance of 13 patterns in the real network.  Milo R et 

al argue that S is influenced by the size of the network and propose normalization of S to make it 

largely independent of network size.  Thus, significance profile vector, Z  is defined as Zj = Sj / |S|.  

This makes comparison of networks of varying sizes possible. 
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2.3. Correlation of Motif Significance Profiles  

Standard correlation coefficients (Pearson correlation coefficient) between Z vectors of two 

systems is used as a measure of similarity between significance profiles of two systems.  The 

correlation coefficient can vary from -1 to +1.  A value of +1 implies that the 13 patterns are present 

to the same extent in both systems i.e., if a particular pattern is over-represented (under-represented) 

in one system it will be over-represented (under-represented) in the other system to the same extent.   

3. Architectures of diverse Systems  
3.1. Brief Details of considered Systems 

In this paper we consider 38 arbitrarily chosen systems from literature and study their architectures. 

Systems considered range from aircraft engine [Manuel E Sosa et al], softwares [Software graph data], 

electronic circuits [ISCAS High level models, ISCAS'89 benchmark data], robot [Amro M. Farid et al], refrigerator 

[Thomas U. Pimmler and Steven D. Eppinger], bacteria e-coli [Bacteria e-coil, yeast S], yeast S. cerevisiae [Bacteria e-

coil, yeast S], language networks [Kaufman L, Rousseeuw P J.]

3.2. Similarities in MSP across Systems 

.  These 38 systems are of vastly different sizes 

(ranging from minimum 16 components to maximum 23843 components).  Table 3.1 briefly 

identifies each of the 38 systems along with their sizes. In electronic circuits, nodes represent 

component gates and edges represent the interconnection between gates. In case of software 

systems, nodes represent a software class and edges represent reference between classes. In 

mechanical systems, nodes represent physical components and edges represent exchange of energy, 

material or signal between components. In case of biological systems, nodes represent genes and 

edges represent direct transcription interactions. In case of languages, each node represents a word 

and an edge occurs when one directly follows the other in the text.  

Shaja and Sudhakar in [Shaja A S, Sudhakar K, INCOSE 2009] have studied the MSP of the 

considered engineering systems (aircraft engine, softwares, electronic circuits, robot and 

refrigerator). Uri Alon et al have studied the MSP of the above considered languages and biology 

systems. They investigated the similarities in significance profiles across the considered systems by 

computing correlation coefficient between each pair. This combined information can be presented as 

a square matrix of size 38.  Diagonal elements of the matrix represent similarity of significance 

profile of a system with itself and are always +1. Off diagonal elements can take values in the range 
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-1 to +1.    In Figure 3.2 the full range of values (-1 to +1) is grouped into 3 regions and indicated by 

3 different colors for visual impact.  

–  +0.65 ≤ Correlation coefficient ≤ +1.00, Positively correlated, red color 

– - 0.65 < Correlation coefficient < +0.65, Weak or no correlation,  light green color 

– - 1.0 ≤  Correlation coefficient ≤  -0.65, Negatively correlated, blue color    

Shaja and Sudhakar in [Shaja A S, Sudhakar K, INCOSE 2009] performed clustering using a standard 

clustering algorithm (partitioning around medoids algorithm [Kaufman L et al]

 

), where edge weights are 

clustering coefficients. The square matrix after regrouping of systems based on clustering is shown 

in Fig 3.2.   There are 5 distinct groups as revealed by 5 red colored blocks along the diagonal.  

These 5 blocks contain systems whose significance profiles are all positively correlated with respect 

to each other.  It is interesting to note that the above grouping coincides with standard grouping as 

biology, languages, software, electrical and mechanical.   

System 
no System Name Nodes System 

no System Name Nodes System 
no System Name Nodes 

S1 
Digital 
Fractional 
Multiplier (s208) 

122 S14 ECAT (c1355) 1355 S27 ALU (c7552) 3718 

S2 
Digital 
Fractional 
Multiplier (s420) 

252 S15 Forward logic chips 
(s9234) 5844 S28 PLD (s641) 433 

S3 
Digital 
Fractional 
Multiplier (s838) 

512 S16 Forward logic chips 
(s13207) 8651 S29 ECAT (c1908) 913 

S4 Ecoli 423 S17 Forward logic chips 
(s15850) 10383 S30 ALU (c3540) 1719 

S5 Yeast 688 S18 Forward logic chips 
(s38417) 23843 S31 Traffic control 

system (s562) 217 

S6 Apword 1096 S19 Forward logic chips 
(s38584) 20717 S32 Aircraft Engine 54 

S7 Linux 5420 S20 Traffic control system 
(s400) 186 S33 Refrigerator 16 

S8 Mysql 1501 S21 PLD (s820) 312 S34 Robot 28 

S9 Vtk 778 S22 Traffic control system 
(s382) 182 S35 English 7724 

S10 Xmms 1097 S23 ALU (74181) 87 S36 French 9424 

S11 Traffic control 
system (s444) 205 S24 PLD (s832) 310 S37 Japanese 3177 

S12 PLD (s713) 447 S25 ECAT (c499) 243 S38 Spanish 12642 

S13 ALU (c2670) 1350 S26 ALU (c880) 443    

 

Table 3.1 38 systems considered  
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Fig 3.2 Similarities in significance profiles (MSP) across all 38 systems after clustering  

 

4. Similarities through Component Characteristics 
4.1. Component Characteristics  

We define the component characteristics in terms of the in-degree and out-degree of a 

component/node.  Each system can be characterized by distribution (counts) of nodes of different 

in/out-degrees that constitute the system.  The correlation between distributions of pairs systems can 

be estimated. We find that the correlation coefficient so defined can classify systems in respective 

superfamilies. 

4.2. Component Characteristic Profiles (CCP) 

 Let us now consider an integer plot – considering in-degree of component on X-axis, out-

degree of component on Y-axis and count of components having the corresponding in-degree, out-

degree pairs on Z-axis. One can visualize this as a histogram – i.e., each unit-square on the plot 
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shows how many components have that in/out-degree. The in-degree (X-axis) and out-degree (Y-

axis) are considered till only 10 unit counts. Adequacy of the length of X and Y axis is confirmed by 

the fact that very few components across all systems considered have more than 10 in-degree or out-

degree. In order to compare systems of various sizes (number of nodes), we normalize the plot. This 

is done by dividing the number in each square (Z-axis) by the total components of that system. Let 

us call this as the Component Characteristic Profile of a System. 

4.3. Similarities in Component Characteristic Profiles across Systems 

We create component characteristic profiles for all the considered systems. We find striking 

resemblances of the CCPs of systems within the same family/group. Fig 3.4 shows CCPs of 5 system 

families, with two systems from each family to highlight how similar they look within each family 

and how different they look across families.  
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Fig 3.3 Similarities in Component Characteristic Profiles across Systems 

We now propose a mathematical basis to capture the likeness or otherwise of a pair of CCP 

profiles.  The Z is defined for each system as a real value (<1) for integer values of X & Y, each 

going from 0 to 11.  ie. Z is a matrix of size 11 x 11 of real values.  Z can also be visualized a vector 

size 11x11 =121.   Thus CCP of each system is a vector of size 121.  We can now define a 

correlation coefficient of a pair of systems as we did for MSP.   This information is presented in Fig 

3.4 as a square matrix (same terminology and legends as in Fig 3.2 are used) except the correlation 

in Fig 3.2 is based on MSPs and in Fig 3.4 it is based on CCPs. The corresponding systems falling 

inside the related superfamilies can be easily seen from the matrix. 
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Fig 3.4 Similarities in component characteristic profiles (CCP) across all 38 systems after clustering  

 

4.4. Discussion 

Table 3.2 helps us to understand/compare how close are the correlations due to MSPs (Fig 3.2) 

and CSPs (Fig 3.4) of these families. 

 

S.No Family 

Symbol in 

Figure 3.2, 

3.4 

System No 
Average MSP 

Correlation 

Average CCP 

Correlation 

MSP 

Correlated? 

CCP 

Correlated? 

1 Electronic Circuits-I E1 S1-S3 0.9 0.9 Yes Yes 

2 Biological Systems B S4-S5 0.9 0.9 Yes Yes 

3 Software Systems S S6-S10 0.9 0.9 Yes Yes 

4 Electronic Circuits-II E2 S11-S19 0.9 
0.8 

Yes Yes 

5 Electronic Circuits-III E3 S20-S31 0.9 Yes Yes 
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6 
Mechanical 

Engineering Systems 
M S32-S34 0.9 0.7 Yes Yes 

7 Languages L S35-S38 0.9 0.9 Yes Yes 

 

Table 3.2 Relationship between the correlation families due to MSPs and CCPs 

We find that, all the systems of a family seems to be using similar distribution of in-degree and 

out-degree. This can be seen from Fig 3.3 and Fig 3.4 as well. Apart from the tabulated correlation 

of families, most of the super-families (marked as groups in Fig 3.2 and Fig 3.4) also have close 

similarities. For instance, the groups 1, 4, 5 formed by MSP and groups 1, 5, 6 formed by CCP 

respectively are similar. These groups stand out to be electronic circuits (digital fractional 

multipliers), mechanical systems and languages respectively. The superfamilies corresponding to 

biological systems and softwares stand as separate families with respect to CCPs, however they fall 

into the same superfamily with respect to MSP. 

5. Conclusion & Directions 
Ideas related to complex system architectures may give insight into previously complex and 

poorly understood phenomena in engineering domains. Albert Barabasi argues that, “The science of 

networks is experiencing a boom. But despite the necessary multi-disciplinary approach to tackle the 

theory of complexity, scientists remain largely compartmentalized in their separate disciplines”. The 

application of this complex system architectures theory is still in infancy and has very recently 

entered into study of engineering systems or their design. This paper has shown that the superfamiles 

classification can be arrived at by merely looking at components/nodes characteristics, i.e., the over-

represented pattern signature classification of the system architectures across families is due to the 

properties of the individual components that form the system. This is shown by considering 38 

arbitrarily chosen systems ranging from - biology systems, languages, electronic circuits, software 

systems and mechanical engineering systems. This study has thrown some new insights about 

Classification of Systems from Component Characteristics. 
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